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1. INTIODUCTION

The research group at the Center for Wave Phenomena has been developing

inversion algorithms for progressively more complex background velocities

and source-receiver configurations. In each extension, the crucial issue

- has been the determination of certain properties of a matrix involving

derivatives of the travel time(s).

-' This report discusses and extends a recent result along these lines

which appeared in a paper by Gregory Beylkin (1985). Beylkin reduces the

problem to consideration of a single canonical determinant, h, (defined g

- below) and then assumes that this determinant does not vanish. With this

assumption, he establishes a very general inversion result.

Obviously, then, future theoretical research will focus on the

evaluation of h and on establishing conditions for the non-vanishing of

Beylkin's determinant, h, and on dealing with the phenomena arising when it

does vanish.

The more serious cases of vanishing h ire due to phenomena such as

caustics in the incident ray field. However, Beylkin's h will also vanish

in the case of insufficient date. Thus, for example, we rule out such

obvious impossibilities as obtaining a 3-D inversion from a single line of

data, etc. In the case of insufficient data, one must make additional

*assumptions about the subsurface geometry consistent with the given data

configuration. In the example just mentioned, one would be forced to assume

-[ that the subsurface was independent of the direction orthogonal to the line

of observations. One could then either use the 2D wave equation (i.e.

assume line sources) as in classical migration, (Schneider, 1978). (Stolt,

1978), or, preferably, continue to use the 3D wave equation (i.e. use point

* sources), (Cohen and Bleistein, 1979). This letter approach is known as the

r ,
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2.5D geometry and is expounded in detail in a recent Center for Wave

Phenomena Research Report (Bleistein, 1984a).

Beylkin's paper uses powerful mathematical tools, such as the notions

of pseudo-differential operators, generalized Radon transforms, and

generalized back projections. Moreover, Beylkin frames his work in an N-

dimensional space.

Here, we dispense with this mathematical machinery and for convenience

confine ourselves to the 3D case (and its 2.5D specialization). We are able

to expound Beylkin's results by an approach similar to that presented

earlier in (Cohen and Hagin, 1985). However, we do not attempt to

rigorously prove our results, but instead content ourselves with an

intuitive derivation and the citing of Beylkin's theorem. We remark in

passing that we are contemplating the possibility of developing a classical

proof of Beylkin's result.

We have established significant simplifications of Beylkin's result

for the following cases of propagation governed by the acoustic wave

equation:

(1) The zero-offset case with a general c(x,y,z) reference velocity. This

work is described in the present report. See also (Cohen and Hagin,

1985) for the special case of a c(z) reference velocity. Here, in all

but the case of a constant reference, one has to exclude "turned rays"

in order to guarantee that h (or its equivalent in earlier approaches)

does not vanish. It is easy to build this restriction into the zero-

offset algorithm (Sumner, 1985), but only at the cost of excluding the

imaging of reflectors "from below". At the present time, the Center

for Wave Phenomena is investigating the use of turned rays in the c(z)

* case.
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(2) The common source offset gather and the common receiver offset gather

with general c(x,y,z) reference velocity. This work is also described

below.

(3) The case of common offset with a constant reference velocity. Here, an

explicit inversion formula has been obtained (Sullivan and Cohen,

1985). We remark that the derivation of this result does not proceed

from the Born approach described below, but instead starts from the

Kirchhoff (high frequency) representation of the scattered field

(Bleistein, 1984b). Work on coding and testing this algorithm is now •

under way.

II. The General Inversion Formula

We consider a completely arbitrary source-receiver configuration

parametrized by two surface coordinates, 4, and 42. Vectors, x and x' -

denote arbitrary subsurface field points. Vector xr denotes a generic

source, while x. denotes a generic receiver. Any relation between the

sources and receivers is defined by the dependencies of x and x on the """
-r -s

parameters 4, and 2:-

x= (x x ) , x' = (x,x',x')

= , , x = x(), xr = Xr(.). (1)

For example, if

_r ,) = xs(, , (2) ..,
!r -5

then we have the case of zero offset. if

Xs( ) = constant, (3)

then we have the common source configuration. If _

3..-.. . j



!x ( ) = +s( ) + 2d, d = constant, (4)

then we have the common offset case, etc.

We note that the above formulation of the source-receiver configuration

is somewhat more general and inclusive than the formulation in Beylkin's

paper. Our formulation admits the possibility of a curved observation .

surface, while he makes the usual assumption of observations on the flat

observation plane z = x, = 0. We have included this mild generalization

because it may aid in the development of pre-statics inversion algorithms

(May and Covey, 1980). Also, Beylkin splits off his derivation of the

common source result into a separate case from the case when the receiver

locations depend on the source locations.

As expounded in several previous papers and reports, we make the

following assumptions:

(1) the velocity, v(x,yz), is well approximated by a known reference _

velocity, c(x,y,z), so that

a 2j-- (l+a(x)), 5
v (x) c (x)

where a(x,y,z) is a perturbation correction,

(2) the seismic fields are governed with sufficient accuracy by the 3-D

acoustic wave equation, and

(3) the seismic source can be reduced to an ideal 3-D point source, so

that:

V u(tx) - u(t,x) = -6(t)b(x-x ) . (6) " " ".

I S
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These assumptions and the application of Green's theorem lead to the linear

integral equation,

G(w, x', x )G(o, x', x
-s - r

D(w,xr, Xs)_ = W J d'x' s - (7)
c (x')

Here, by the assumption that a in (5) is small, we have been able to

approximate the field emanating from the sources by one governed by a wave

equation with a velocity function equal to the reference velocity, c,

instead the full velocity, v. Since our sources are point sources, the

functions denoted by G in equation (7) are the impulse response or Green's

functions for the wave equation with velocity c(x,y,z). Equation (7) is an

integral equation for the unknown velocity perturbation, a(x,y,z), with data

being the observations, D, at the receivers, x r, due to the sources, xs .

We now exploit the fact that geophysical data resides in the high

frequency regime (Bleistein, 1984b), so that we may replace the Green's

functions in (7), by their WKBJ approximations, -

G(w,x,x o )  A(x,x )  e - o0 (8)
-- 0 -- 0 0

V
where x. is either x. or xr and the travel-time phase satisfies the eikonal

equation,

V . = - " (9)
C€(x) -1

while the amplitude satisfies the transport equation,

2Vz.VA + AV = 0 (10) 0

Thus, we may rewrite (7) as

- -w.' I



Di _, _x  )  d S x' aZx' W_ (II)(x a~

c (XI)

where 1(xt) and a(x.t) are given by

= (x,xs) + r(x,xr)

(12)
a(x,,) = A(X,Xs)A(xxr)

From the basic migration principle of "backward propagationo, it is not

hard to guess that the inversion operator for (11) will have the negative of

the phase in (11). The correct amplitude is not as easy to guess and in our U

inversion equation,

a(x) ~i d 4g(j) b(x,) dw F(W) e D(,x r (13)

we merely denote it by b(x, ), and deduce it below. In equation (13),

denotes the differential area element on the observation surface (unity

for a plane) and F(W) denotes a known high band pass filter which is

included to honor the fact that the data is confined to the high frequency

regime. Note that while a priori the unknown amplitude could depend on W,

we suppress this potential dependence because our prior inversion results

suggest that b(x,t) is independent of w to first order. The results to

follow also confirms this assumption.

Inserting (11) into (13) gives an equation which maps t(x') to a(x).

Thus, since we have an integral over all z' space, the kernel must be the

three-dimensional Dirac delta function. A slight rewriting of this fact

gives

6S
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2 i [ I(1', a)-1(;, L) I"""
d Flw) e - c (xlblx-x') ( 14) ':_

Our task is to solve (14) for the unknown amplitude, b. Then equation (13)

will give the inversion algorithm for a.

Since we have used high frequency approximations, we cannot recover low

frequency phenomena such as trend information. We can expect to recover

information about the discontinuities (i.e. rapid changes) in the

substructure.

The essence of Beylkin's result is that if we confine attention to the

discontinuity structure of a, then in (14), we need keep only two terms of

the Taylor series of 1(x',4) about x' = xi and similarly we need keep only

one term of the expansion of alx,.). In order to establish these facts

rigorously Beylkin uses powerful results in the theory of generalized Radon

transforms. However, noting that the result on the left must involve a

Dirac delta function acting at x' x, these approximations are intuitively

reasonable. Thus in (14), we use the approximations

tlx', 2 I- , x,) + VIlx, .l(x'-x)

8lx, ) a(x,) (15) . .

to obtain

If • Jg a(!, ,t)

2 I W V ~ lx , ' ( x -x ' ) 2 x 6 x x ) •1 6

dw w F(W)e c (x)6x-x)
fS

Following Beylkin, we make the change of variables,

k = iuVflt, g) (17) - '

from w, , 2 to kj, k2, ks (while viewing x as a Oparameter") . Since the

-7-
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w dependence on the Jacobian of this transformation is just a power, Beylkin

defines the scaled Jacobian, b. by

at at at.- ---.

ax 8x ax

2 2 2
8x8 , 8x"-

ax| at | OX34 tX1
2 2

ax atz ax 2 a . ax 3 a ,2  -..

We now rewrite (16) as

d k a(X, )b(xt)ek - c (x)8(x-x') (19)

From (19) and the classical Fourier transform completeness relation, it

is clear how to choose the inversion amplitude b:

b(xt)c (x) - (20)b(_ n 9 ) ~

Inserting this result into (13) gives the inversion result:

-. s jj -r.-c z) 2 JhI") e- i W#+ (x , L) :iQx) ff d, fI ddw a(.) D++ r ' Xs (21) ".
an.

where I and a are defined above in (12).

It is intriguing to note that if we define the kernel,

w ~wx~ 5)G(w,-xxr)
t( x ,z ) = (22)

- -S -r 2€i)'..'

c (x)

then we may state our integral equation and its inversion as
S -.

+ '
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D(w, x x) d x K(w,x,x ,x )a(x) (23)-ro s -- s-r

and
a(LE) ff d' D(w, x x) (24)

8nKw, xs XrI! rs

In the last equation, we must regard w as a function of x and k as defined

by the change of variables (17)

9U



111. The Zero-Offset Confixur ation

In the case of zero-offset, we can find a representation of the

Jacobian h in terms of the rays used to construct the Green's function.

Using the notation x as in (2), for the zero-offset source-receiver point

we have

2V-rx, x ) (x,x o )  .

h(x,t) = 2 --- Vr x,x) = 8 a-L (x o  (25)

aa
2 0~V~xx at 2 R(x'xo)2 ) > !

where in the second equality, we have introduced

2(1,1o) = Vr(x,z ) , (26)

and where the dependence in p comes from x )

From the eikonal equation (9), we have

R (27)

c (x)

Since the speed, c, is independent of , we also derive from (27)

a (8
2 " a -i  p = 0, i = 1,2. (28)

We now multiply the third column of h by p3 and compensate with the

reciprocal of p, outside the determinanti then on multiplying the first two

columns by respectively p, and p2, and adding these to the third column, we

obtain

-10- -



pi p2  1/c,

h(X,) .L 8i3 0 (29) -

PS "

p8p

" '8 Px P2 /c

q0

.:.:._ p--j- + - aT-1-4

which can be written as

h(x,) 8 1 ,,2 ) (30)
c (x)p,(xx-o) a

Here we have introduced the Jacobian notation

- ap1  8p2

a(pp) P2
(31)

2 ap 1  ap 2
a43 a4 2

The evaluation of this determinant is a key, and often difficult, step. In

appendix A, we show that

(p1, p2) 2 2

= -16n A (x,xo)P, o) (xz 0 " (32)

* where po is the initial direction of the ray from xo to x and fn is the

downward normal to the data surface at x Thus the absolute value of h is

given by

Ih(_,)I =(_, t) 1 0- 16n1 gB p " (33)

and the zero-offset inversion for general reference velocity can be

expressed as
i'' 

"""
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-2iwlx,x )"
alx)' - jj PO J dw e -oD(w, x) (34)

This is a substantial simplification of the general result (21), since it

obviates the necessity for computing the amplitude when tracing the rays

between surface and field points. Note from appendix A that computation of

the amplitude would, in turn, require computation of the ray Jacobian. The

net result is that we save six equations along rays and have only to solve

the remaining seven equations for x, p, and T.

The special case of this result in which the reference speed is a

function of depth only was derived in (Cohen and Bagin 1985). That result

agrees with the present one aside from a slight change in notation. Of "

course the present result also agrees with the constant reference speed

* result (Bleistein, 1985).

There are two further issues to be addressed concerning the 

implementation of (34). These are the specialization to the case of a

linear array (the 2.5 dimensional case mentioned in the introduction) and ..

the fact that discerning discontinuities is made easier if one replaces a by S

the reflectivity function, , (related to the normal derivative of a)

(Bleistein, 1984b)

In the usual case of a data set collected on a linear array instead of

,'' a full 2D array, we cannot obtain a full 3D subsurface inversion. A model -'

consistent with this restricted set of observations is one in which both the -.-.

*) observation surface and the subsurface are assumed to be "cylindrical" with

respect to xZ :

c= c(x,x ) a =(x ,x) (35)

12
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and that the observation surface had the special parametrization:

Xl= x ( ') x, x=xS( ) . (36)

In the 2.5 case, it is possible to eliminate the integral over by the

method of stationary phase. Carrying out this step and for simplicity

further specializing to the case of linear observations,

x= ,=0 (37)

we obtain the 2.5D result,

16 dzi -2 iwr (xi. xs, 10)
a(x, x- di (f.x. q3 .0D(,. ) . (38)

Here Gf denotes the final value of the ray parameter a for the ray from xo

to x (or equivalently from x to z0 ) and q3 is the value of p. on the

observation array (see (40) below). In the reference just cited, it is
0

shown that we may use 2D calculations to compute the rays:

dx'
o=T P1 .' (0) = 1I

dx, 
"

do p ,(0) 0

dp ,p (0) = q (39)

9s 
Ic (x2

dT1 0

2
dr 1 

'-+-

= ~. -- , r(0) = 0

C

To apply (38), we fix the desired field point, (x,x,) and a suitable

aperture of observation points (41,0) on the observation array. Then we

trace the ray from (41,0) to (xL,x,) and -ompute v, of and the ray parameter

F.+
. . .,

" .-.-..-+ .-..-----.+ -.-' .+ . .+ . : . .+ - + .• + .- -.--' , + .: . ... -.. .. .-.. . . . . . . . . . . . . . . . . . .".-.-.- .. ."."... . . . . . .... .+ - . : .i : : i '.



q1 . Then we can explicitly evaluate

q ____ q (40)

Ic k JL' 0

To obtain the reflectivity function, ~,we introduce into (38) the

factor (Bleistein, 1984b),

i sgn(w) k/4

and thereby obtain, by (17),

fdw iWF(W) e D(w4) (41)

61



-' - - - -"'-' -v w -- w - -• "

IV. The Coon Source Confixuration",'."I.. ,In this section, we show that the computations of the previous section

allow as to obtain inversion formulae for the common source configuration

and (by reciprocity) for the common receiver configuration. For a common

* source gather, we have

" = constant -(42)

so that z(x,x 5 and

. s '' X (43).- "

-, s = V c z I ' ) (43)

are independent of the surface parameters, . Denoting the ray direction to

the receiver array by simply 2, (to facilitate comparison with the previous .

section), we have

p= VrTx,x ) , (44)

-r0

and Beylkin's determinant becomes

+ 2

* h~z~) =(45) a

Since determinants are linear functions of their rows, h can be written

as h =hj + h2 where

. . . * * ,*.. .



Ps

h at (46)

and

h2 (47)

Since the last two rows of each of these determinants is the same as in the

zero-offset case (with x taking the place of x0) we can proceed as at the_r -

beginning of the last section to obtain

and

2~'~ 
3.XX)2x)aqL

Using the result of the appendix, we have

n~ ~Rr (50)

*p S S

and so, using the general result (21) we obtain

-16-



A(T" 7,7% W.M.R 2. rP~s -. 7-. "

a )_ dZA A(x, x ) 1 + - --- ) •

uC!) ,j r Alx, ) 2 ~s 3-p r
3

iw[,(r X, xs + r(x, x r j (o. -S
J dw F() e -(w, xr )-• -- r ""

In (51) we have restated the result in (50) by use of the eikonal

equation for

The implementation of (51) is not as simple as the zero-offset case/

the principle difficulty being the necessity to compute the two amplitude

factors. In addition, the questions of constructing "synthetic apertures'

in order to use an array of common source gathers as well as how to

systematically use nearby common source gathers to reduce noise in a post

migration processing remain open. S

Obviously, the solution for the common receiver configuration can be

derived at once from (51) by interchanging the subscripts s and r and

defining S

S= Vr (, x) (52)

Vr(x,x r ) (53)
Pr=

17S

- 17 -.
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Al: Appendix on the Zero-Offset Jacobian

It is natural to think of rc(g,x 0 ) as the travel time along a ray path

with initial point x0 and running point x. In this model, R is the p

associated ray direction along the ray from x0 to x" Furthermore, to solve

the eikonal equation in this model by the method of characteristics (or "ray

method"), one must consider the family of rays emanating from the "fixed"

point x and consider x as an arbitrary field point. Of course, in

constructing the eikonal, T, and transport amplitude, A, we can consider xo

to be an arbitrary point on the observation surface, or otherwise put, we

repeat the ray method solution for each xo

On the other hand, if we think of the field point, x, as fixed, it is

equally valid to compute the travel time using a ray with initial point x

and "final" point, xo .  In this model, this "upward" ray direction is

simply the negative of the ray direction on the "downward" ray at any given

point on the ray, and we consider the family of rays emanating from the

"fixed" point x.

In the computation of the 2 by 2 Jacobian determinant in (31), we need

to compute derivatives with respect to the second argument of p. Thus we

adopt the point of view where x is fixed. However, in our original

description, the vector x o was bound to the observation surface. Thus we

introduce a new running variable, !' governed by the ray equations,

do p : [101=-

d I V L / p(0) free (A-1)

do 2 -'

- , T(O) =0

c

-19- S



We impose no condition on the starting ray direction in (A-1) because, to

construct the Green's function, we want the 'conoidal" solution of the

eikonal equation (Bleistein, 1984b). In order to impose the condition that

each ray emanating from x passes through a point, x o, on the observation

surface, we demand

y(of) = X (A-2)

This last condition defines, for each such ray the final value, of# of a as

a function of . (The question of having a unique ray to each surface point .I
is subsumed in the issue of the non-vanishing of Beylkin's h determinant.)

We now evaluate our 2 by 2 Jacobian by introducing the ray parameter a

and then using the chain rule as follows:

a(p1 (xx 0),px2 '"x) (pxX'Y)'P2(X 7)) I
42- a( ,a 2 f (A-3)

a(P P" P2 )'
8t 1 , 1 , ) o = f.-..

a(ppa 8(yy,y,)=f, s
a ( v ., vy 2a ' Y S f0 O f

The second of these 3 by 3 Jacobians can be evaluated as

9(yimy1,y 3 A
al., 0) = of _2 (A-4)

: -R° 0 _tL X t s  ;:-

where we have introduced the surface tangent vectors

- 20-



-t ~-o o i 1=, 2 , (A-5)

and where E. denotes the initial direction of the ray from •o to A (or the

n!gative of the final direction of the ray from x to x o ) and finally ,

denotes the unit downward normal to the data surface at z The remaining

Jacobian in (A-3) is the reciprocal of the ray Jacobian for rays emanating

from x

a(Y, y 2 , yj
y ,) (A-6)

From the transport equation, we can derive the relation,

2

J(y) A (y,x) = constant (A-7)

(see (Bleistein, 1984b)). The constant in (A-7) can be evaluated by

allowing to approach the fixed field point x and using the constant c

result with c being c(x). We find for this limit, -

1i 1 (A-8)X - 16r2 p3 U., x ° ).21 i.
2

so that the ray Jacobian is given by

1 z(A-9)

S= of 16 2pS(x, )A (Xx 0

Here we have used reciprocity to switch the arguments of A. Combining (A-

3), (A-4), and (A-9) we find that the required 2 by 2 Jacobian is given by

a ( p i p , 2. 2;
-16.ip )A(X, ISA 0 (A-10)

8( l, 0)

as asserted in the text (32).

-21-
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